
42 The Delphi Magazine Issue 63

Effective Delphi
Class Engineering
Part 5: You Are
TEgg Man...
I Am TWalrus
by David Baer

Last month we concluded right
in the midst of an examination

of polymorphism and inheritance.
We’re going to resume just where
we left off.

As I write this introduction
(having already finished the bulk of
the piece), I’m startled by what has
turned out to be a nearly total
absence of code examples. It’s not
that I start any article with some
particular balance of prose to code
in mind, but this one turned out to
be mostly words. If it’s code you
want, however, the last guideline
will satisfy your craving, I promise.

Now, without further ado, let’s
dive right back into it.

Abstract Methods
Use abstract method declarations to
‘nail down’ method signatures.

Suppose that you’re producing a
class for use solely as a base from
which other classes will inherit. In
other words, only instances of
derived classes will ever be cre-
ated, no instances of the base class
itself. Now, suppose further that
some service must be uniformly
supplied by derived classes, but
the parent class is in no position to
supply a default service.

This is not an uncommon situa-
tion when designing a family of
classes. What to do? One solution
is to declare a virtual method with
a skeleton implementation. The
declaration is effectively an API
definition for the class, even if the
implementation is deferred to
child classes.

The skeleton method implemen-
tation might consist of nothing
between the method’s begin and
end. If you want to be more
thorough, it might contain a single
statement that raises an exception
(with a message that the method
should not have been called). This
would protect against the method
being erroneously called on an
instance of the base class.

There’s an easier way, however,
and one that can be helpful to
someone working on the code for
the derived class. You may add the
abstract designation to the
declaration, like this:

procedure MyMethod; virtual;
abstract;

This tells the compiler that the
implementation is intentionally
omitted, but an overridden
method that does have an imple-
mentation will need to be supplied
by a child class. Not only will the
compiler not object to the missing
method, it will cause an exception
to be raised should an attempt be
made to call the base class’s
method. Classes containing one or
more abstract methods are
sometimes called abstract classes.

You should avoid using abstract
methods in classes for which
instances may be created,
however, even where the non-
implemented method is never
needed by instances of the class.
The compiler helpfully generates
warning diagnostics when an

instance of a class that has an
abstract method is created. This is
not something you should impose
upon the users of your class. If
instances will be created, go the
route of the skeleton implem-
entation that raises the exception.

Polymorphic Payoffs
Contemplate how the polymorphic
capabilities of TStream-derived
classes give you leverage in writing
your own code, then consider how
you might provide similar benefits
to users of your classes.

If you’ve done much work using
Delphi stream objects, you will
possibly already be attuned to this
guideline. Delphi streams are con-
venient, powerful and flexible.
Especially flexible, in that anything
that needs a TStream to work with
will be equally content with an
object of type TFileStream, TMem-
oryStream, TStringStream, or any
other TStream-derived class.

This flexibility, if you’ve not real-
ised it, comes to you courtesy of
polymorphism. So ask yourself if
you have an opportunity to offer
the users of your classes similar
benefits?

No doubt about it, inheritance
and polymorphism give us class
designers and coders a big boost
in terms of code reuse. But there’s
plenty of wealth to share with our
users. TStream classes are a great
example of this. However, if you
want a further lesson in how
class implementers can benefit
from polymorphism, there is an
even better place to seek
enlightenment.

Poly-Powers
Study TStrings and derived classes
to truly understand the amazing
power of polymorphism.

We’ve now arrived at the heart
of the matter. With the concept
we’re about to explore, once you
truly ‘get it’, OO mastery is a down-
hill coast from there on out. But,
I remember that it took quite a
while in my own OO studies before
this particular light switched on.

I’m convinced that much of the
difficulty arose from poor exam-
ples used to illustrate the point.
The first several OO texts I studied



November 2000 The Delphi Magazine 43

always set the explanation up
something like this:

You have a base class, TAnimal,
and several derived classes: TDog,
TCat, TCow, etc. TAnimal has a virtual
method Speak (abstract or empty
placeholder, doesn’t matter). Each
derived class supplies an imple-
mentation wherein a message is
displayed: Bow Wow, Meow, etc.
Now, we have an array of TAnimal
objects, each element of which is
assigned an object of one of the
derived types. We iterate through
the array, invoking Speak on each
element, and experience all
manner of animal commentary.
Isn’t that special?

Or, at least it might be if this sort
of scenario was commonly encoun-
tered in real-life coding. But it’s
really not that common. I don’t
mean the business about silly
animal classes (instead of some-
thing more realistic), but the need
to hold a collection of sibling class
instances in an array over which
we iterate calling the same method
for each entry. This kind of exam-
ple just never made me react with
more than a mild ‘hmmm,
interesting’.

I don’t believe I understood the
importance of virtual method
capabilities until I dived into the
code implementing TStringList
and its base class TStrings. It was
then the penny finally dropped. So,
let’s take a close look at these
classes to see just how they do take
advantage of virtual methods. This
explanation is neither brief nor
obvious, but I think your patience
will be well rewarded.

TStrings and derived classes
are, if nothing else, extremely con-
venient to use. Their basic charter
is to store and manage an unlim-
ited number of character strings;
but additional services, such as
concatenating all the held strings
via the Text property, exist as well.
The most familiar member of the
TStrings family is TStringList.
Users of it will very likely be famil-
iar with the Objects property as
well, and we’ll have a closer look at
that momentarily.

Members of the TStrings family
do some moderately sophisticated
processing, and much of the code

supplying these services is found
in the TStringsbase class itself. But
TStrings defers one very critical
responsibility to descendants:
interacting with the particular
physical storage mechanism used
by the derived class.

For TStringList, the responsibil-
ity involves maintaining an inter-
nal list of string references, much
like maintaining an array of strings
in application code. But consider
TMemoStrings, the class used to
access the text content of a TMemo
object. Here, the class makes use of
the Windows-supplied buffer of the
actual Window control. This is just
what’s called for, given the buffer
will be used to hold the text for
display in any case.

What’s the trick? It’s the straight-
forward (but, oh so clever) use of
virtual abstract methods in
TStrings for processes that inter-
act with the physical storage
mechanisms. Specifically, TStrings
declares two protected methods
(Get and GetCount) and three public
methods (Clear, Delete and Insert)
that are virtual abstract. These
routines are responsible for get-
ting the string data in and out of the
storage used by the particular
derived class. TStrings declines to
provide a default implementation
of the routines, that’s left as a
requirement for descendant
classes.

However, since the five methods
are declared, they are available to
be called from the 40 (or so) other
TStrings methods that are imple-
mented. As a result, those methods
(like Add and Exchange) can supply
eminently useful services, even
though the management of physi-
cal storage is left unspecified. That,
my friends, is polymorphism deliv-
ering the real goods!

Before we leave this topic, we
should also consider the Objects
property of TStrings. There’s a
very different motive at play in this
case. The designers of TStrings
presumably wanted to allow
descendant classes to optionally
implement the capability, but
unlike the case with physical
string storage, did not want to
require an implementation. So, in
this case, we see virtual routines

(notably GetObject and PutObject)
supplied with skeletal ‘place-
holder’ implementations. But the
point is that there is an implemen-
tation in this case.

Classes derived from TStrings
must provide implementations of
the abstract methods if things are
to work. But supplying an overrid-
den GetObject, etc, is entirely
optional. For a derivative class like
TMemoStrings, for which an Objects
property would rarely be useful,
no overriding is needed, and no
harm results from this absence.

There you have it. This has been
a wordy explanation, but we have
just dealt with what I believe is the
most elusive concept required to
truly understand software object
orientation. If it still seems a little
confusing, then re-read this sec-
tion, and keep staring at the code
in the TStrings class family. When
you do understand it, you can hon-
estly and proudly call yourself an
object oriented engineer.

Personality Plus
When designing a class whose
responsibilities are growing to the
point where multiple ‘personalities’
start to emerge, consider factoring
out common traits into a base class,
and derive each individual
personality from that base.

A Swiss Army knife may be the
perfect tool to take along when
venturing off into the wilderness.
But amid the comforts of home,
you’ll better appreciate an actual
pair of scissors when mending a
garment, a corkscrew at the dinner
table, a screwdriver when
installing a board in your PC, etc.

Classes are often no different.
The more focused they are on a
specific task, the more efficiently
they can usually be employed. If
you’re sceptical about this, just
consider our old friends, the vari-
ous Delphi stream classes. Sup-
pose that rather than a TFile-
Stream, TMemoryStream, etc, we just
had a TEveryThingStream.

At a minimum, method calls
would require more parameters.
But I’d also bet that what is easily
done with the specific stream
types would be a good deal mess-
ier with the ‘universal’ version.



44 The Delphi Magazine Issue 63

Object oriented design can be
immensely rewarding when you
have a good command of the tech-
niques. Just don’t get carried away
producing Swiss Army classes.
Have even more fun producing
adroit, purposeful, classes. Where
those classes share common char-
acteristics, the factoring out of
common services into a shared
base class is a potent technique.

Inheritance As A
Partitioning Tool
Feel free to use inheritance as a
construction technique even when
you are just implementing one class.

When faced with a complex
design challenge, a good software
engineer will normally look for
ways to decompose the problem
into smaller, more manageable,
pieces and to compose the solu-
tion of elements that address the
individual pieces of the problem
decomposition. This is standard
operating procedure for those who
are accustomed to thinking in an
object oriented fashion.

Try to picture the composition
process as proceeding in one or
both of two ‘dimensions’. Use of
multiple classes to affect a solution
(‘componentization’ if you will)
suggests a horizontal composition.
Employing internal helper classes
to produce a more complex class
(aggregation) suggests a vertical
composition. With inheritance, we
have one addition ‘dimension’
along which the solution may be
structured.

Suppose you were assigned with
the task of supplying a Whirring
Whirling Widget. Now that sounds
like a design challenge if ever there
was one!

Even though there is only a
single object type needed to fulfill
the requirement, a perfectly viable
approach could be to use inheri-
tance. Start first by designing and
implementing the fundamental
widget-ness in a class that
attempts no more than that.

Using that class as a base, derive
another class that supplies the
whirling. Then, once again, that
class can be the base of the final
class, in which you introduce the
whirring.

In approaching the design this
way, you will not enjoy the benefits
of writing less code. There’s only
one final class and so there’s no
opportunity to take advantage of
code re-use. In fact, in all likeli-
hood, you’d have a tiny bit more
code than you would in a single
monolithic class.

But you still might accomplish
the job faster by decomposing the
problem in this natural way. For
example, if everything were work-
ing just fine, except the whirling
was a bit irregular, you’d know
exactly where to look to diagnose
and fix the problem.

Of course, if your users were
later to approach you saying: ‘Your
widget’s brilliant! Is there any pos-
sibility you could also build us a
Whooping Whirling Widget and a
Warbling Whirling Widget?’, it’d be
ages before that smug expression
disappeared from your face.

Dynamic Methods
Dynamic methods look exotic and
important, but the chances you’ll
ever actually need to use them in
preference to virtual methods are
slim.

If you’ve spent any time studying
classes in the lower reaches of the
VCL hierarchy, you’ll likely have
encountered an alternative to vir-
tual methods known as dynamic
methods. Perhaps you’ve thought
‘Hmm, the Borland engineers use
these things all over the place in
the VCL, but I don’t use them any-
where. Maybe I’m unenlightened,
maybe I’m missing out.’ Relax,
because you’re neither.

Consider that Delphi first came
on the scene at a time when Win-
dows 3.x was the most common
desktop OS (and there were a fair
number of DOS machines still in
service at the time, as well). The
16-bit addressing of the Windows
of the time imposed some very
serious difficulties where large
data blocks were concerned. Spe-
cifically, addressing storage areas
larger than 64Kb was a major
hassle. As a result, all kinds of
inventive devices were employed
to conserve storage. Throw in the
fact that RAM was incredibly
expensive compared to what we

enjoy today and there was an even
greater motivation to conserve.

I’d be willing to bet that dynamic
methods were one of those inven-
tions. You’ll hopefully remember
from last month the fairly straight-
forward way in which virtual meth-
ods are implemented in Delphi. A
table of virtual method addresses
(the VMT) is maintained for each
class. Furthermore, the VMT of a
parent class becomes the first part
of the VMT for a class inheriting
from it. If one has a base class with
many virtual methods, not only
will the VMT of that class be large,
so will the VMT of every class for
which it’s an ancestor.

Although VMTs offer a fast
lookup mechanism, they can be
wasteful of space in a situation like
that just described. Eliminating
this waste is the very purpose of
dynamic methods. Without going
into the fine details, suffice it to say
that dynamic methods trade fast
performance for conservation of
storage.

Whereas the address of a virtual
method will appear in every VMT
of a class or its descendants, a
dynamic method address will
appear only in the class informa-
tion of a class where the method
first appears or is overridden. But
the tradeoff is that the instruction
path length for calling a dynamic
method can be considerably
longer. Thankfully, RAM is rela-
tively inexpensive and abundant
these days, so stick with virtual
methods. The case for using
dynamic methods is far more
difficult to make now than it was in
the dark ages of 16-bit Windows.

One final note: message handler
methods (which are something we
are going to look at in the final
instalment of this series) have a lot
in common with dynamic meth-
ods. Do not get them mixed up,
however, because message
handlers are something you will
want at your disposal from time to
time.

Constructors Revisited
Understand the unique personality
of constructors to leverage their
capabilities (or at very least, to keep
yourself out of trouble).



46 The Delphi Magazine Issue 63

There’s a special kind of method
in Delphi (as well as most OO lan-
guages) called a class method.
What makes a class method differ-
ent from regular methods is that,
with a regular method, one needs a
valid instance of the class in order
to invoke the method. A class
method may be called with either a
class type or object reference, as
seen below.

StorageLength :=
TMyClass.InstanceSize;

StorageLength :=
MyObject.InstanceSize;

So it makes sense that construc-
tors are a kind of class method,
does it not? After all, how could we
call a constructor to create an
instance of a class if we needed a
class instance to call the
constructor?

As it turns out, that notion is half
correct. Constructors in Object
Pascal are unique and somewhat
unusual hybrid methods. The com-
piler will generate different code
depending on how the call is
coded. To create a class instance,
the constructor is appended to the
class type name (or a class type ref-
erence). In this case, storage for
the instance must first be allo-
cated. This is accomplished by
first calling the NewInstance
method for the class (NewInstance
being a class method itself, by the
way), whose job it is to acquire the
storage. The other notable behav-
ior of the initial constructor call is
that the address of the instance
data block is returned like a
function result.

If an instance variable is explic-
itly used rather than the class type
name (or if the instance reference
is implicitly Self), the compiler
generates code that’s just like a
regular method call, in which the
instance pointer is appended to
the parameter list. This type of call
will almost always be calling an
ancestor constructor using the
inherited keyword.

There’s an interesting possibil-
ity arising from how all this works.
If your constructor fully initializes
the member data in the class, call-
ing the constructor on an existing

reference can be done to
re-initialize the class. I’m not actu-
ally advocating that you ever code
such a thing. For heaven’s sake,
create an Initialize method, even
if it’s a bit more work, so the poor
maintenance programmer who
might later encounter this won’t
think you’re a madman. The point
is that if you understand why you
could do this, then you have a
pretty good idea what’s happening
during the object creation process.

Object Pascal offers one more
somewhat unique quality with
respect to constructors: they may
be virtual. But why would you ever
even want a virtual constructor? If
you want to create a class, surely
you must know what kind of class
you want to create, don’t you?
Well, the Delphi component
streaming machinery that dynami-
cally creates component instances
doesn’t know ahead of time. Thus,
the language was given this some-
what unusual ability. However, the
result is that you must be on your
toes when declaring a constructor:
where the base class’s constructor
is virtual, your declaration will
need the override directive.

Inherited Properties
Take advantage of the capability
that allows you to reference to
hidden properties in base classes.

Calling upon ancestor class ser-
vices using inherited method calls
is widely practised. It’s not a
Delphi-only technique, but it’s
something done in many OO envi-
ronments. That you can access
inherited properties in the same
way is not as widely known. But the
fact is you can do it, and the code is
completely straightforward, eg:

Result := inherited MyProperty;
inherited MyProperty :=
‘Some Value’;

The question is why or when would
you need to do something like this?
There’s no standard answer, but
the situation will probably involve
inheritance from outside the class
family (ie, the base class was not
designed by your team). You may
just need to slightly change the
semantics, or you might need to

actually change the type of the
property. We needn’t spend a lot of
time on this guideline, because
knowing thsat the capability exists
is the main point here. But let me
offer a simple case study where
this is useful.

Suppose you’re developing a set
of custom Windows controls (yes,
we’re talking about components
here, but never forget that compo-
nents are classes). Let’s say that
you’ve got some special treatment
of caption text: a capability to let
the customer define synonyms for
business terminology via an exter-
nal dictionary. If you’re inheriting
your classes from VCL classes (eg
TLabel), then the base class has a
Caption property used for
specifying the text to display.

At the same time, you don’t want
to impose unfamiliar property
names on the users of your compo-
nents. You’d like them to interact
with the familiar Caption property
in your class which can be exter-
nally manipulated, while the
underlying label (or whatever)
Caption gets set with the inherited
reference. It’s really very simple.

Missing In Action
There is no multiple inheritance in
Object Pascal: get over it!

Object Pascal, like a number of
other perfectly respectable OO
languages, limits class inheritance
to a single parent class. Some lan-
guages, notably C++, offer the pos-
sibility of more than one parent
class. Having followed the Delphi
newsgroups over the years, I’ve
observed that it’s rare for any
extended period of time to elapse
without someone bemoaning the
absence of multiple inheritance
(MI) as a deficiency of Object
Pascal.

In case MI is a new concept to
you, let me just give you a hint
about when it might be useful. If
you have a non-trivial class family,
classes at the end of the inheri-
tance chain (final classes) are
highly dependent upon their
ancestry. If you want to graft addi-
tional behavior on to a final class,
and that behavior is implemented
in a class not in the ancestry, then
you are stuck. You cannot just



48 The Delphi Magazine Issue 63

blithely switch parent classes with-
out breaking everything in sight.
MI sometimes offers the way to
accomplish the task.

But even in the C++ community,
where use of MI is not uncommon,
there are many who argue that its
benefits are overshadowed by its
shortcomings. I’ve no intention of
resurrecting that debate here,
other than noting that there seem
to be a majority of Delphi practitio-
ners who are perfectly content
with things just as they are.

However, if you are a refugee
from C++ who is having trouble
adjusting, there is an alternative
that is generally regarded as pref-
erable to MI, and there is a second
alternative which is even easier,
which most people seem to over-
look entirely.

The first alternative involves
using Delphi interfaces. Although
these would appear to have been
introduced into the language to
support Microsoft’s COM technol-
ogy, their application for non-COM
purposes is now becoming routine
practice. An explanation of how
interfaces are a serviceable MI
alternative is considerably beyond
the scope of this discussion. But
the topic has been well covered
elsewhere. In fact, it was the
subject of my very first article for
The Delphi Magazine: Issue 38,
August 1998 [Available on our
excellent value Collection 2000 back
issues CD-ROM, along with all the
other articles from Issues 1 to 60!
Ed].

The second alternative seems
obvious to me, although I’ve never
seen it recommended in this con-
text. Any Delphi object can send
any other Delphi object a message.
If the recipient object is equipped
to handle the message, it will.
Messages don’t implement any
kind of inheritance, of course. But
there are situations where the
method calls in an MI setting could
be replaced with messages, and in
doing so, the need for invoking
services via those methods (and
thus the need for MI) would disap-
pear.

We’ll look at Delphi messaging
more closely in the final instalment
of this series.

Friendly Advice
Compiler hints and warnings are
your friends: heed their advice.

Nowhere is it more important to
heed compiler warning messages
in Delphi than in those areas asso-
ciated with inheritance. For exam-
ple, it’s easy to forget to provide
the override keyword on a method
declaration. Things would work
very differently in this case and an
oversight like this could cause
some exceedingly perplexing
behavior.

In my own code, I have a zero
tolerance policy towards warnings
and hints, and I know of more than
a few seasoned pros that feel the
same. Given that warnings and
hints are almost always trivial to
suppress with a tiny code modifi-
cation or two, there’s no excuse in
my book to allow them to persist.

This is especially true of presum-
ably professionally produced
classes or components. If I’m
evaluating a third-party compo-
nent library and find that the code
produces hints or warnings, I’m
immediately sceptical about the
overall quality of the product. This
isn’t to say that it’s cause for
automatic rejection. Unfortu-
nately, the last time I needed to
recompile a couple of Borland VCL
units, I encountered... you guessed
it.

Back to the subject of
inheritance: one technique for
eliminating a warning is notewor-
thy here. If you ‘re-declare’ a vir-
tual function without the override
keyword, you’re stating that the
method is static. If you mistakenly
code virtual when you meant
override, you’re stating that the
method is virtual, but it’s not a
continuation of the virtual ‘lineage’
from class ancestors; with your
new virtual declaration, you’re
starting a new branch of virtual
methods.

Once in a while you intentionally
need to reintroduce a method
named the same as an ancestor
method. The reintroduce keyword
was added to Object Pascal (in
Delphi 3 I believe) to allow you to
tell the compiler: ‘I’m doing this
intentionally, so don’t produce a
warning in this case’.

Before we leave this subject,
consider another error that’s all
too easy to make: specifying over-
load rather than override.
Depending on who you ask, over-
load is either eminently useful or
it’s an evil enhancement to the
language. Either way, it has
nothing to do with inheritance, so,
once again, heed the compiler
warnings.

The Grand Design
To understand the power of inheri-
tance, you’d have to look long and
hard before finding a better role
model than the VCL itself.

The Delphi VCL is an extraordi-
nary piece of software engineering
with respect to what can be done
with class inheritance (even if it
won’t compile without producing
warnings and/or hints). You could
benefit immensely from a study of
the VCL, but there’s a trick in how
to approach it.

The VCL is vast, and it’s more
than a little intimidating when you
first start exploring. When study-
ing the VCL, one needs (especially
at first) an action plan regarding
what you’re going to look at. With-
out it, you’re at considerable risk
of getting lost, if the intimidation
factor doesn’t get to you first.

Let me suggest an action plan for
studying VCL inheritance: pick a
familiar window control compo-
nent, like the TButton. Peruse the
class declarations between
TObject and TButton. Stick only to
those classes, don’t allow yourself
to be sidetracked. Even if you stay
on course, you’ll be visiting four
separate units: System, Classes,
Controls and StdCtrls.

You’ll encounter some things
dealing with component manage-
ment that may make little sense,
especially when you’re low in the
hierarchy in TPersistent and
TComponent. Don’t worry about it.
What you want to be looking at on
this trip is how the capabilities of
the classes are introduced, one
layer at a time. One of the things
that make the VCL such a compel-
ling subject for study is the
number of levels employed. In the
case of TButton, we have seven
classes involved counting TObject



November 2000 The Delphi Magazine 49

at the start of the inheritance chain
and TButton at the end.

This isn’t to suggest that many
inheritance levels are something
for which to strive. But consider
just how much functionality there
is in Delphi button, from the
standpoint of being a component
with streaming capabilities, the
standpoint of being an encapsu-
lated window control, and
everything in between. There’s an
incredible amount going on here,
even for a lowly button.

The VCL just feels right to me in
this regard. Even after more than
five years of working with it, I am
still a little awestruck by how well it
all fits together.

Next Time
We’re in the home stretch. After a
month off (I need a break too!), the
series will return with the conclud-
ing instalment in which we’ll look
at a number of diverse topics that
don’t merit an entire article, but
which are nevertheless important

class engineering considerations
in Delphi.

David Baer is Senior Architectural
Engineer at StarMine in San
Francisco. The fact that this
article, which achieved a world
record high prose-to-code ratio,
was written at the same time the
Olympics were being held was
purely coincidental. Contact him
at dbaer@starmine.com


	Abstract Methods
	Polymorphic Payoffs
	Poly-Powers
	Personality Plus
	Inheritance As A Partitioning Tool
	Dynamic Methods
	Constructors Revisited
	Inherited Properties
	Missing In Action
	Friendly Advice
	The Grand Design
	Next Time

